Modeling Art History

Tunic-with-checkerboard-pattern-and-stepped-yoke_1995.32.McD_

For my modeling & simulation class this Fall, I am exploring a new collaboration with colleagues from the Dallas Museum of Art (DMA).  The exploration consists of a mix of digital humanities, art history, computer science, and modeling & simulation. The above image is of a tunic that is part of the DMA collection and currently on display in the exhibition entitled Inca: Conquests of the Andes/Los Incas y las conquistas de los Andes. It is a beautiful piece with rich history from the Peruvian culture. What does this have to do with process modeling that we do in simulation? The tunic, like all works of art, can be interpreted and presented in numerous ways. I think this diversity of interpretation is central to both modeling and to the humanities. Bruno Latour, in How to Be Iconophilic in Art, Science, and Religion [1], concludes his essay with "The difficulty is to learn how to be iconophilic for one form of visual culture without being iconoclastic for the others." We need diversity in interpretation, and modeling helps achieve this diversity with multiple, mediated objects each providing an understanding of a phenomenon, like the checkered Andean Tunic. How might we model a process that partially re-creates this pattern? This can be done with text-based scripts or with a visual program. How did the Peruvians weave this particular tunic (ref. Lesli Robertson's gallery talk)? One classic technology employed is the back-strap loom. How might we use modern weaving methods and weaving draft notations to model something similar? How were the red and black dyes made for the pattern? What transportation processes (people and things moving around) were in place to get materials to and from their locations? All of these are questions of process [2], and models of process are therefore creative interpretations of the tunic. Process models can be an integral part of the history and interpretation of art. In last year's class, we used Max/Msp (a visual programing data flow program used by artists) and the target scenarios to be modeled came from everywhere. This year our targets are all inside the DMA. We are therefore continuing to use Max, but diving further into the art world for our cultural context. Can we learn to see these models in the art? Can diagrammatic models provide additional interpretation and knowledge about art and culture? This approach is a departure from "Big X" (e.g. Big Data).  We may find some interesting workflow models that yield new information on art by amassing and sifting through huge online collections. This should be part of our process. But, to quote Feynman in the spirit of "close reading" within the traditional humanities, there is plenty of room at the bottom if we only diversify our interpretations of a single work.

[1] In Latour, B. 1998. How to Be Iconophilic in Art, Science, and Religion? in Jones, C. A. & Galison, P., Eds, Picturing Science Producing Art, Routledge.

[2] Questions of process are not only central to modeling and simulation but also to computer science. The term "code" means to model a process, usually with typographic symbols in the form of a program or script.